
Putting AMD Instinct™ MI300X Accelerators to the Test on Dell
PowerEdge™ XE9680 Rack Server With LORA Fine-tuning and vLLM
Model Serving

| August 2024

The release of the AMD Instinct MI300X accelerator marks a significant milestone in the AI
hardware landscape, providing an alternative for powering today’s generative AI solutions.
Dell has integrated eight AMD Instinct MI300X accelerators into their flagship PowerEdge
XE9680 server designed for high performance AI applications. To evaluate this combination,
Metrum AI was granted early access and conducted real-world performance tests in fine-
tuning and model serving across industry leading open weight models, revealing the
following total cost of ownership advantages:

Ability to deploy Llama 3.1 405B FP16 Model on a single Dell PowerEdge XE9680 server.

Ability to fine-tune large language models with higher batch sizes on a single Dell

PowerEdge XE9680 server reducing overall training time.

Ability to deliver leadership scalability on Mixture of Experts models for concurrent users

or agents.

| 1

| 2

In this blog, we’ll demonstrate the deployment of Llama 3.1 405B at FP16 precision on a
single Dell PowerEdge XE9680 server with eight AMD Instinct MI300X accelerators. We’ll
also introduce our performance testing methodology and results for fine-tuning and vLLM
model serving.

“Dell PowerEdge XE9680 server paired with AMD Instinct MI300X accelerators delivers
industry leading TCO for single node fine-tuning and deployment of state of the art LLMs

such as Llama 3.1 405B at FP16 precision.”.

 - Chetan Gadgil, CTO, Scalers AI

FINE-TUNING

8x AMD® Instinct™
MI300X Accelerators

8x AMD® Instinct™
MI300X Accelerators

8x AMD® Instinct™
MI300X Accelerators

 Llama 3 70B Instruct Model
 Llama 3.1 405B Model

Dell™ PowerEdge™
XE9680 Server

Dell™ PowerEdge™
XE9680 Server

Dell™ PowerEdge™
XE9680 Server

vLLM MODEL SERVING

Mixtral 8x7B Instruct Model

 Llama 3.1 70B Instruct Model

Mixtral 8x7B Instruct Model

Mistral Large Instruct 2407

VALIDATION

 Llama 3 8B Instruct Model

FP16 Precision

FP16 Precision FP16 Precision

Part 1.0: Deploying Llama 3.1 405B

| 4

Llama 3 . 1 405B Val idat ion
Precis ion : FP16 , Concurrent Requests : 1 , 64 , 256

1536 GB

8x AMD Instinct™
MI300X Accelerators

1 64 256

Meta-Llama-3.1-405B-Instruct
0

100

200

300

400

500
452

In
fe

re
n

c
e

 (
v

L
L

M
 S

e
rv

in
g

)
M

a
x

T
h

ro
u

g
h

p
u

t
in

 T
o

k
e

n
s

P
e

r
S

e
c

o
n

d

341

17.9

Dell PowerEdge™
XE9680 Server

Metrum AI deployed Llama 3.1 405B with FP16 precision on vLLM using a single Dell
PowerEdge XE9680 Server equipped with eight AMD Instinct MI300X accelerators. The high
memory capacity and bandwidth of the server made it possible to handle the model's 405
billion parameters, totaling 810 GB of memory. As illustrated in the chart above, total token
throughput scales effectively with the number of concurrent requests - an essential factor in
real world scenarios for enterprises implementing API & agent-based workflows or batch
applications.

Now that we have demonstrated the ability to deploy a massive open-weight LLM, we’ll
showcase how you can fine-tune pretrained leading open-weight LLMs using a domain
specific dataset.

| 6

Part 2.0: Fine Tuning

Why Fine-Tuning is Important for Enterprise AI

Fine-tuning is essential for enterprise AI because it customizes pre-trained models to meet
specific industry needs, improving their performance on specialized tasks. By training
models on domain-specific data, fine-tuning improves accuracy and relevance towards
specific enterprise functions, resulting in more coherent and context-aware outputs. This
approach is also cost-effective, as it requires less data and computational resources
compared to training models from scratch.

Methodology Overview

To best reflect the experience enterprises would have in fine-tuning, we selected an industry
specific data set, leveraged several leading open-weight models, and conducted tests using
industry leading fine-tuning tools.

We specifically use the pqa-labeled subset of the pubmed_qa dataset, containing 1000 data
samples with ~516k total tokens (estimated using the Llama 3 tokenizer), for fine-tuning the
following models: Mixtral 8x7B Instruct v0.1, Llama-3-8B-Instruct, Llama-3-70B-Instruct.
PubMedQA was selected as a domain specific dataset that reflects enterprise fine-tuning
workloads. The models Mixtral 8x7B Instruct, Llama 3 8B Instruct, and Llama 3 70B Instruct
were selected because they are leading open-weight models, well positioned for enterprise
fine-tuning due to their performance, quality, and commercial friendly licensing. We
conducted testing for batch sizes 1, 16, 64 and 128 using FP16 model precision. Each
scenario included 200 steps with a maximum length of tokens of 512, preceded by a warm-
up phase of 10 steps. Warm-up steps are excluded from metrics collection.

The following fine-tuning stack was used to conduct the tests, leveraging the Hugging Face
Transformers library in combination with Hugging Face Accelerate. We selected Hugging
Face Accelerate for its ease of use and widespread developer adoption. This stack uses AMD
ROCm™ 6.1, AMD’s open-source software stack designed for GPU computation. AMD ROCm
6.1 enables seamless support of PyTorch v2.1.2, Hugging Face Accelerate, and leading state
of the art open-weight models.

https://huggingface.co/datasets/pubmed_qa/viewer/pqa_labeled
https://huggingface.co/datasets/pubmed_qa
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct

| 6

Architecture Overview

 AMD ROCm 6.1

 Ubuntu 22.04 LTS

Mixtral 8x7B Instruct | Llama 3 8B Instruct | Llama 3 70B Instruct

Docker v26.1.2

PyTorch v2.1.2

 Hugging Face
Accelerate

Dell PowerEdge XE9680 Rack Server

8x AMD Instinct MI300X Accelerators

ROCm-
transformers

 ROCm-
bitsandbytes

 PubMedQA
Dataset

Hugging Face
Trainer

Hugging Face
PEFT v0.11.1

Performance Results

To measure performance we collected train tokens per second, which is defined as the
number of tokens a model processes per second during fine-tuning. Train tokens per
second is particularly valuable for estimating training time and resource requirements in
large-scale fine-tuning projects.

| 7

Mixtral-8x7B-Instruct-v0.1 Meta-Llama-3.1-70B-Instruct Mistral-Large-Instruct-2407
0

2000

4000

6000

8000

10000

12000

vLLM Model Serv ing • Max Throughput in Tokens Per Second

Precis ion : FP16 , Vary ing Concurrent Requests

M
a

x
 T

h
ro

u
g

h
p

u
t

(T
o

k
e

n
s

P
e

r
S

e
c

o
n

d
)

11,448

7,791

5,160

717

2,246 2,413

654 937
1,472

512 1024 2048 64 1024 2048 64 128 512

Concurrent Requests

The chart above illustrates significant improvements in fine-tuning token throughput with
increased batch sizes on the Mixtral 8x7B Instruct model. For instance, using a batch size of
16 instead of 1, significantly boosts token throughput, as shown in the chart above,
increasing tokens per second by over 6x. Even greater gains in larger tokens per second
values are observed for batch sizes 64 and 128.

Similarly, we observed significant improvements in token throughput with increased batch
size on the Llama 3 8B and 70B Instruct models. In these scenarios, using a batch size of 16
instead of 1 boosted token throughput by over 2.5x.

| 8

Dell PowerEdge XE9680 server, with eight AMD Instinct MI300X accelerators, excels at fine-
tuning large language models (LLMs) with larger batch sizes due to its sizable memory
footprint, of 192 GB per accelerator. This larger memory capacity allows for greater batch
sizes, which not only boost training throughput by processing more data per iteration, but
also enable faster convergence. As a result, the number of epochs needed for optimal
performance is reduced, making fine-tuning faster and resource efficient - an essential
factor for optimizing total cost of ownership (TCO) in enterprise environments.

Now that we have demonstrated the ability to deploy fine-tune a pretrained model for a
specific domain, we’ll showcase how you can deploy or serve this model in validation or
product environments.

Part 3.0: vLLM Model Serving

Methodology Overview

To deploy the model, we use vLLM, an industry-leading model serving solution, to reflect the
common approach enterprises take to deploy AI. vLLM (Virtual Large Language Model) is an
open-source library designed to optimize the deployment (inference and serving) of large
language models (LLMs), which addresses the challenges of high computational demands
and inefficient memory management typically associated with deploying LLMs in real-world,
client-server applications. To achieve this, vLLM implements a number of optimizations
including dynamic batching.

We deployed the following models using vLLM with FP16 precision: Mistral-Large-Instruct-
2407, Llama-3.1-70B-Instruct, Mixtral 8x7B Instruct v0.1 and conducted performance testing
by varying the number of concurrent requests using Apache Bench with the following
values: 64, 128, 512, 1024 & 2048. We also employed a prompt randomizer component
which substitutes a random prompt from a pool of "k" prompts, configurable to millions of
randomized prompts from a given pool, to simulate real-world concurrent user activity. Here,
we use an average input prompt length of 32 tokens and a maximum length of output tokens
of 256.

The methodology used leverages a high-performance load balancer to simulate a single
virtualized service, an architecture that can elastically respond to high demand. This
approach simulates supporting multiple concurrent users or agents simultaneously within
typical client server applications.

https://huggingface.co/mistralai/Mistral-Large-Instruct-2407
https://huggingface.co/mistralai/Mistral-Large-Instruct-2407
https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1

| 8

The image below illustrates in detail the architecture used for common LLM deployment
scenarios. In this setup, we utilize the vLLM v0.5.3.post1 inference server. The AMD ROCm
6.1.1 driver is installed on the host vLLM v0.5.3.post1 inference server, and the vLLM ROCm
docker image supported on AMD ROCm 6.1.1 is built using vLLM.

Note: These tests were performed using vLLM release v0.5.3.post1 which was the latest
version available when the tests were initiated.

 AMD ROCm 6.1

 Ubuntu 22.04 LTS

Mixtral 8x7B Instruct | Llama 3.1 70B Instruct | Mistral Large Instruct 2407

Docker v26.1.2

PyTorch v2.1.2

vLLM v0.5.3.post1

Dell PowerEdge XE9680
Rack Server

8x AMD Instinct MI300X Accelerators

https://github.com/vllm-project/vllm/tree/v0.5.3.post1
https://github.com/ROCm/vllm/tree/a8228756cfece32ff3225b3f17c14e032dbc6187
https://github.com/vllm-project/vllm/tree/v0.5.3.post1

Performance Results

We measured performance by collecting throughput in tokens per second, a widely-used
metric used to evaluate how quickly a deployed model can respond to requests and
generate outputs in real-world applications.

| 7

This chart demonstrates how throughput scales with the number of concurrent requests.
For enterprises looking to deploy workflows based on agents or serve batch-based
applications, achieving high token throughput at high concurrency is crucial. It ensures
these workflows can efficiently handle large volumes of input data while maintaining high
reliability, parallelism and performance - factors that are often more critical than basic token
latency.

512 1024 2048

Mixtral-8x7B-Instruct-v0.1 Meta-Llama-2-7B-chat-hf Meta-Llama-2-70B-chat-hf Meta-Llama-3-70B-Instruct
0

2000

4000

6000

8000

10000

12000

14000

Inference (vLLM Serv ing) • Max Throughput in Tokens Per Second

Precis ion : FP16 , Concurrent Requests : 5 12 , 1024 ,2048

Model

M
a

x
 T

h
ro

u
g

h
p

u
t

(T
o

k
e

n
s

P
e

r
S

e
c

o
n

d
)

13,302

4,431
4,072

3,157 2,923
2,140 1,941

8,931

5,985

13,730

10,040
9,109

Summary

We measured performance by collecting throughput in tokens per second, a widely-used
metric used to evaluate how quickly a deployed model can respond to requests and
generate outputs in real-world applications.

| 7

FINE-TUNING

8x AMD® Instinct™
MI300X Accelerators

8x AMD® Instinct™
MI300X Accelerators

8x AMD® Instinct™
MI300X Accelerators

 Llama 3 70B Instruct Model
 Llama 3.1 405B Model

Dell™ PowerEdge™
XE9680 Server

Dell™ PowerEdge™
XE9680 Server

Dell™ PowerEdge™
XE9680 Server

vLLM MODEL SERVING

Mixtral 8x7B Instruct Model

 Llama 3.1 70B Instruct Model

Mixtral 8x7B Instruct Model

Mistral Large Instruct 2407

VALIDATION

 Llama 3 8B Instruct Model

FP16 Precision

FP16 Precision FP16 Precision

Dell PowerEdge XE9680 server with AMD Instinct MI300X accelerators provides a powerful
platform for fine-tuning and vLLM model serving, meeting the needs of enterprises looking
to develop and deploy state of the art generative AI solutions.

Benchmarking Methodology

In this section, we provide a more detailed overview of our methodology. If you'd like to
replicate the results presented in this blog, reach out to us at contact@metrum.ai.

| 7

Our performance benchmarking architecture for a vLLM (v0.5.3.post1) model serving
scenario on multiple GPUs is built around four major components:

Apache Bench1.
A Prompt Randomizer2.
A Load Balancer3.
Multiple vLLM Serving Replicas4.

See next page for diagram.

Start with Dell PowerEdge XE9680 Server configurations as such.

OS: Ubuntu 22.04.4 LTS
Kernel version: 5.15.0-94-generic
Docker Version: Docker Version 26.1.2
AMD ROCm version: 6.1.1
Server: Dell PowerEdge XE9680 Server
GPU: 8x AMD Instinct MI300X Accelerators

Fine-tuning

For those interested in replicating a similar performance testing of LoRA fine-tuning on AMD
GPUs, AMD provides comprehensive documentation and a detailed guide to help you get
started. For a step-by-step walkthrough to reproduce LoRA fine-tuning, refer to this AMD
ROCm blog.

AMD provides a ready-to-use script for fine-tuning, available in their GitHub repository.

vLLM Model Serving

mailto:contact@metrum.ai
https://rocm.blogs.amd.com/artificial-intelligence/starcoder-fine-tune/README.html
https://rocm.blogs.amd.com/artificial-intelligence/starcoder-fine-tune/README.html
https://github.com/ROCm/rocm-blogs/blob/release/blogs/artificial-intelligence/starcoder-fine-tune/src/finetune.py

| 7

The load balancer (e.g. nginx, haproxy, traefik or similar) handles load balancing between
the input requests from Apache Bench and the multiple vLLM serving replicas deployed on
the server. Each vLLM serving replica will be configured to load the model on multiple
GPUs given the required tensor parallelism. The count of replicas will fall in the range of
values (1, 2, 4, 8) and will be based on the following factors:

Number of LLM Model Parameters1.
Inference Precision2.
GPU Memory Capability3.

Through a prompt randomizer, Apache Bench will access the load balancer at port 9080.
The prompt randomizer will randomly select prompts from the list and the load balancer will
then distribute the request among the deployed vLLM serving replicas using a round-robin
strategy.

Each vLLM serving replica will expose ports ranging from 8001 to 8000+n, where n is the
number of vLLM serving replicas deployed. These ports can be accessed by the Metrics
Collector module to retrieve vLLM production metrics via the /metrics endpoint.

Apache Bench

Metrics Collector

vLLM OpenAI
Serving n

Port 8000+n

vLLM OpenAI
Serving 2
Port 8002

Prompt
Randomizer

vLLM OpenAI
Serving 1

Port 8001

Load
Balancer

. . .

Port 8000 Port 9080

R Requests R Requests

Round Robin Distribution Strategy

R/n Requests R/n Requests R/n Requests

8001/Metrics 8002/Metrics 8000+n/Metrics

Running vLLM Server

vLLM offers a comprehensive guide for running vLLMs on AMD GPUs. For detailed
instructions and setup information, please refer to the vLLM documentation.

| 7

Resources

Dell product image: Dell.com, https://www.dell.com/
AMD product image: AMD library, https://www.amd.com/en/partner/resources/resource-
library.html

Copyright © 2024 Metrum AI, Inc. All Rights Reserved. This project was commissioned by
Dell Technologies. Dell and other trademarks are trademarks of Dell Inc. or its subsidiaries.
AMD, Instinct™, ROCm™, and combinations thereof are trademarks of Advanced Micro
Devices, Inc. All other product names are the trademarks of their respective owners.

***DISCLAIMER - Performance varies by hardware and software configurations, including
testing conditions, system settings, application complexity, the quantity of data, batch sizes,
software versions, libraries used, and other factors. The results of performance testing
provided are intended for informational purposes only and should not be considered as a
guarantee of actual performance.

https://docs.vllm.ai/en/latest/getting_started/amd-installation.html

