
In this blog, Metrum AI and Dell have partnered to show you how to use domain-
specific data to fine-tune the Llama 3 8B Model with BF16 precision on a distributed
system of Dell PowerEdge XE9680 Servers equipped with AMD Instinct MI300X
Accelerators.

Delivering Choice For Enterprise AI: Multi-Node Fine-Tuning On Dell
PowerEdge™ XE9680 With AMD Instinct™ MI300X Accelerators

| May 2024

Large language models (LLMs) have been a significant breakthrough in AI and
demonstrated remarkable capabilities in understanding and generating human-like text
across a wide range of domains. The first step in approaching an LLM-assisted AI solution is
generally pre-training, during which an untrained model learns to anticipate the next token
in a given sequence using information acquired from various massive datasets, followed by
fine-tuning, which involves adapting the pre-trained model for a domain specific task by
updating a task-specific layer on top.

Fine-tuning, however, still requires a lot of time, computation, and RAM. One approach to
reducing computation time is distributed fine-tuning, which allows computational
resources to be more efficiently utilized by parallelizing the fine-tuning process across
multiple GPUs or devices.

| 1

Introduction

Metrum AI showcased various industry-leading capabilities of Dell PowerEdge XE9680
Servers paired with AMD Instinct MI300X Accelerators on a distributed fine-tuning task by
uncovering these key value drivers:

Developed a distributed finetuning software stack on the flagship Dell PowerEdge
XE9680 Server equipped with eight AMD Instinct MI300X Accelerators.

Fine-tuned Llama 3 8B with BF16 precision using the PubMedQA medical dataset on
two Dell PowerEdge XE9680 Servers each equipped with AMD Instinct MI300X
Accelerators.

Deployed a fine-tuned model in an enterprise chatbot scenario & conducted side by
side tests with the Llama 3 8B model.

Released distributed fine-tuning stack with support for Dell PowerEdge XE9680 Servers
equipped with AMD Instinct MI300X Accelerators and NVIDIA H100 Tensor Core GPUs
to offer enterprise choice.

| 3

This solution stack leverages Dell PowerEdge Rack Servers, coupled with Broadcom
Ethernet NICs for providing high-speed inter-node communications needed for distributed
computing as well as Kubernetes for scaling. Each Dell PowerEdge server contains AI
accelerators, specifically AMD Instinct Accelerators to enhance LLM fine-tuning.

The architecture diagram provided below illustrates the configuration of two Dell
PowerEdge XE9680 servers with eight AMD Instinct MI300X accelerators each.

Leveraging Dell PowerEdge, Dell PowerSwitch, and high-speed Broadcom Ethernet Network
adaptors, the software platform integrates Kubernetes (K3S), Ray, Hugging Face Accelerate,
Microsoft DeepSpeed, with other AI libraries and drivers including AMD ROCm™ and
PyTorch.

See diagram on next page.

The Software Stack

| 3

The Software Stack

AMD ROCm 6.1

Kubernetes - k3s

Kubernetes - KubeRay

Ray

Hugging Face Accelerate

Hugging Face Trainer

Ubuntu 22.04 LTS

DeepSpeed

PyTorch

Node 1 Node 2

DELL POWEREDGE RACK SERVER

TRAINING
POD

Dell PowerEdge XE9680
Rack Server

8x AMD Instinct
MI300X Accelerators

ACCELERATORS ACCELERATORS

Dell PowerEdge XE9680
Rack Server

8x AMD Instinct
MI300X Accelerators

8x 8x
Dell EMC PowerSwitch Z9664F-ON

Broadcom NetXtreme® NICs

DELL POWEREDGE RACK SERVER

| 3

Step 1. Set up the distributed cluster.

Follow the k3s setup and introduce additional parameters for the k3s installation script. This
involves configuring flannel, the networking fabric for kubernetes, with a user-selected
specified network interface and utilizing the "host-gw" backend for networking. Then, Helm,
the package manager for Kubernetes, will be used, and AMD plugins will be incorporated to
grant access to AMD Instinct MI300X GPUs for the cluster pods.

Step 2. Install KubeRay and configure Ray Cluster.

The next steps include installing Kuberay, a Kubernetes operator, using Helm. The core of
KubeRay comprises three Kubernetes Custom Resource Definitions (CRDs):

RayCluster: This CRD enables KubeRay to fully manage the lifecycle of a RayCluster,
automating tasks such as cluster creation, deletion, and autoscaling, while ensuring fault
tolerance.
RayJob: KubeRay streamlines job submission by automatically creating a RayCluster
when needed. Users can configure RayJob to initiate job deletion once the task is
completed, enhancing operational efficiency.
RayService: RayService is made up of two parts: a RayCluster and a Ray Serve
deployment graph. RayService offers zero-downtime upgrades for RayCluster and high
availability.

helm repo add kuberay https://ray-project.github.io/kuberay-helm/
helm install kuberay-operator kuberay/kuberay-operator --version
1.0.0

This RayCluster consists of a head node followed by 1 worker node. In a YAML file, the head
node is configured to run Ray with specified parameters, including the dashboard host and
the number of GPUs, as shown in the excerpt below. Here, the worker node is under the
name "gpu-group”.

 ...
 headGroupSpec:
 rayStartParams:
 dashboard-host: "0.0.0.0"
 # setting num-gpus on the rayStartParams enables
 # head node to be used as a worker node
 num-gpus: "8"
 ...

Step-by-Step Guide

https://github.com/flannel-io/flannel

| 3

The Kubernetes service is also defined to expose the Ray dashboard port for the head node.
The deployment of the Ray cluster, as defined in a YAML file, will be executed using kubectl.

kubectl apply -f cluster.yml

Step 3. Fine-tune Llama 3 8B Model with BF16 Precision.
You can either create your own dataset or select one from Hugging Face. The dataset must
be available as a single json file with the specified format below.

{"question":"Is pentraxin 3 reduced in bipolar disorder?", "context":"Immunologic abnormalities
have been found in bipolar disorder but pentraxin 3, a marker of innate immunity, has not been
studied in this population.", "answer":"Individuals with bipolar disorder have low levels of
pentraxin 3 which may reflect impaired innate immunity."}

Jobs will be submitted to the Ray Cluster through the Ray Python SDK utilizing the Python
script, job.py, provided below.

job.py

from ray.job_submission import JobSubmissionClient

Update the <Head Node IP> to your head node IP/Hostname
client = JobSubmissionClient("http://<Head Node IP>:30265")

fine_tuning = (
 "python3 create_dataset.py \
 --dataset_path /train/dataset.json \
 --prompt_type 5 \
 --test_split 0.2 ;"
 "python3 train.py \
 --num-devices 16 \ # Number of GPUs available
 --batch-size-per-device 12 \
 --model-name meta-llama/Meta-Llama-3-8B-Instruct \ # model name
 --output-dir /train/ \
 --hf-token <HuggingFace Token> "
)
submission_id = client.submit_job(entrypoint=fine_tuning,)

print("Use the following command to follow this Job's logs:")
print(f"ray job logs '{submission_id}' --address http://<Head Node
IP>:30265 --follow")

https://docs.ray.io/en/latest/cluster/running-applications/job-submission/sdk.html

| 3

This script initializes the JobSubmissionClient with the head node IP address, and sets
parameters such as prompt_type, which determines how each question-answer datapoint is
formatted when inputted into the model, as well as batch size and number of devices for
training. It then submits the job with these set parameter definitions.

The initial phase involves generating a fine-tuning dataset, which will be stored in a specified
format. Configurations such as the prompt used and the ratio of training to testing data can
be added. During the second phase, we will proceed with fine-tuning the model. For this
fine-tuning, configurations such as the number of GPUs to be utilized, batch size for each
GPU, the model name as available on Hugging Face, Hugging Face API Token, and the
number of epochs to fine-tune can all be specified.

Finally, in the third phase, we can start fine-tuning the model.

python3 job.py

The fine-tuning jobs can be monitored using Ray CLI and Ray Dashboard.
Using Ray CLI:

Retrieve submission ID for the desired job.
Use the command below to track job logs.

ray job logs <Submission ID> --address http://<Head Node IP>:30265 -
-follow

Ensure to replace <Submission ID> and <Head Node IP> with the appropriate values.

Using Ray Dashboard:
To check the status of fine-tuning jobs, simply visit the Jobs page on your Ray
Dashboard at <Head Node IP>:30265 and select the specific job from the list.

The reference code for this solution can be found here.

http://localhost:30265/
https://github.com/dell-examples/generative-ai

| 3

Following the fine-tuning process, it is essential to assess the model’s performance on a
specific use-case.

This solution uses the PubMedQA medical dataset to fine-tune a Llama 3 8B model on BF16
precision for our evaluation. The process was conducted on a distributed setup, utilizing a
batch size of 12 per device, with training performed over 25 epochs. Both the base model
and fine-tuned model are deployed in the Metrum AI enterprise chatbot to compare
performance. The example below prompts the chatbot with a question from the MedMCQA
dataset available on Hugging Face, for which the correct answer is “a.”

Industry Specific Medical Use Case

As shown on the left, the response generated by the base Llama 3 8B model is unstructured
and vague, and returns an incorrect answer. On the other hand, the fine-tuned model returns
the correct answer and also generates a thorough and detailed response to the instruction
while demonstrating an understanding of the specific subject matter, in this case medical
knowledge, relevant to the instruction.

| 3

To deliver enterprise choice, this distributed fine-tuning software stack supports both AMD
Instinct MI300X Accelerators as well as NVIDIA H100 Tensor Core GPUs. Below, we show a
visualization of the unified software and hardware stacks, running seamlessly with the Dell
PowerEdge XE9680 Server.

“Metrum AI is thrilled to offer choice in distributed fine-tuning across both leading AI
GPUs in the industry on the flagship PowerEdge XE9680.”

Steen Graham, CEO at Metrum AI

Enterprise Choice in Industry Leading Accelerators

Kubernetes - k3s

Kubernetes - KubeRay

Ray

Hugging Face Accelerate

Hugging Face Trainer

DeepSpeed

PyTorch

8x NVIDIA H100
Tensor Core GPUs

ACCELERATORS

CUDA

Ubuntu 22.04 LTS

Node 1

Node 2

AMD ROCm 6.1

Ubuntu 22.04 LTS

Node 1

Node 2

TRAINING
POD

DELL POWEREDGE RACK
SERVER

Dell PowerEdge XE9680
Rack Server

ACCELERATORS

DELL POWEREDGE RACK
SERVER

Dell PowerEdge XE9680
Rack Server

8x AMD Instinct
MI300X Accelerators

8x 8x

| 3

Dell PowerEdge XE9680 Server, featuring AMD Instinct MI300X Accelerators, provides
enterprises with cutting-edge infrastructure for creating industry-specific AI solutions using
their own proprietary data. In this blog, we showcased how enterprises deploying applied AI
can take advantage of this unified AI ecosystem by delivering the following critical solutions:

Developed a distributed finetuning software stack on the flagship Dell PowerEdge
XE9680 Server equipped with eight AMD Instinct MI300X Accelerators.

Fine-tuned Llama 3 8B with BF16 precision using the PubMedQA medical dataset on two
Dell PowerEdge XE9680 Servers each equipped with eight AMD Instinct MI300X
Accelerators.

Deployed fine-tuned model in an enterprise chatbot scenario & conducted side by side
tests with Llama 3 8B.

Released distributed fine-tuning stack with support for Dell PowerEdge XE9680 Servers
equipped with AMD Instinct MI300X Accelerators and NVIDIA H100 Tensor Core GPUs to
offer enterprise choice.

Metrum AI is excited to see continued advancements from Dell and AMD on hardware and
software optimizations in the future, including an upcoming RAG (retrieval augmented
generation) offering running on the Dell PowerEdge XE9680 Server with AMD Instinct
MI300X Accelerators at Dell Tech World ‘24.

Summary

Llama 3 Meta AI Blog
PubMedQA

AMD images: AMD Library, https://library.amd.com/account/dashboard/
NVIDIA images: Nvidia.com
Dell images: Dell.com

Copyright © 2024 Metrum AI, Inc. All Rights Reserved. This project was commissioned by Dell Technologies.
Dell and other trademarks are trademarks of Dell Inc. or its subsidiaries. AMD, Instinct™, ROCm™, and
combinations thereof are trademarks of Advanced Micro Devices, Inc. All other product names are the
trademarks of their respective owners.

***DISCLAIMER - Performance varies by hardware and software configurations, including testing conditions,
system settings, application complexity, the quantity of data, batch sizes, software versions, libraries used, and
other factors. The results of performance testing provided are intended for informational purposes only and
should not be considered as a guarantee of actual performance.

References

https://ai.meta.com/blog/meta-llama-3/
https://pubmedqa.github.io/
https://library.amd.com/account/dashboard/

