
In this blog, Metrum AI™ will show you how to fine-tune large language models (LLMs),
deploy 70B parameter models, and run a chatbot on the Dell™ PowerEdge™ XE9680
Server equipped with AMD® Instinct™ MI300X Accelerators.

Entering the Era of Choice in AI: Putting Dell™ PowerEdge™ XE9680
Server with AMD® Instinct™ MI300X Accelerators to the Test by Fine-
tuning and Deploying Llama 2 70B Chat Model.

| March 2024

With the release of the AMD Instinct MI300X Accelerator, we are now entering an era of
choice for leading AI Accelerators that power today’s generative AI solutions. Dell has paired
the accelerators with its flagship PowerEdge XE9680 server for high performance AI
applications. To put this leadership combination to the test, Metrum AI™ received early
access and developed a fine-tuning stack with industry leading open-source components
and deployed the Llama 2 70B Chat Model with FP16 precision in an enterprise chatbot
scenario. In doing so, Metrum AI™ uncovered three critical value drivers:

Deployed the Llama 2 70B parameter model on a single AMD Instinct MI300X
Accelerator on the Dell PowerEdge XE9680 Server.

Deployed eight concurrent instances of the model by utilizing all eight available AMD
Instinct MI300X Accelerators on the Dell PowerEdge XE9680 Server.

Fine-tuned the Llama 2 70B parameter model with FP16 precision on one Dell
PowerEdge XE9680 Server with eight AMD Instinct MI300X accelerators.

| 1

| 2

INFERENCE FINE-TUNING

1x AMD® Instinct™
MI300X Accelerator

8x AMD® Instinct™
MI300X Accelerators

8x AMD® Instinct™
MI300X Accelerators

 Llama 2 70B Chat Model

 8x Instance

 Llama 2 70B Chat Model Llama 2 70B Chat Model

8x 8x

Dell™ PowerEdge™
XE9680 Server

Dell™ PowerEdge™
XE9680 Server

Dell™ PowerEdge™
XE9680 Server

This showcases industry leading total cost of ownership value for enterprises looking to
fine-tune state of the art large language models with their own proprietary data, and deploy
them on a single Dell PowerEdge XE9680 server equipped with AMD Instinct MI300X
Accelerators.

“The PowerEdge XE9680 paired with AMD Instinct MI300X Accelerators delivers industry
leading capability for fine-tuning and deploying eight concurrent instances of the Llama 2

70B FP16 model on a single server.”

 - Chetan Gadgil, CTO, Metrum AI

To recreate, start with Dell PowerEdge XE9680 Server configurations as such.

OS: Ubuntu 22.04.4 LTS
Kernel version: 5.15.0-94-generic
Docker Version: Docker version 25.0.3, build 4debf41
ROCm™ version: 6.0.2
Server: Dell™ PowerEdge™ XE9680
GPU: 8x AMD® Instinct™ MI300X Accelerators

Setup Steps

1. Install the AMD® ROCm™ driver, libraries, and tools. Follow the detailed installation
instructions for your Linux based platform.

To ensure these installations are successful, check the GPU info using rocm-smi.

git clone -b v0.3.2 https://github.com/vllm-project/vllm.git

3. Build the Docker container from the Dockerfile.rocm file inside the cloned vLLM
repository.

cd vllm
sudo docker build -f Dockerfile.rocm -t vllm-rocm:latest .

4. Use the command below to start the vLLM ROCm docker container and open the
container shell.

sudo docker run -it \
--name vllm \
--network=host \
--device=/dev/kfd \
--device=/dev/dri \
--shm-size 16G \
--group-add=video \
--workdir=/ \
vllm-rocm:latest bash

5. Use the command below to start the vLLM ROCm docker container and open the
container shell.

2. Clone the vLLM GitHub repository for 0.3.2 version as below:

huggingface-cli login

| 3

https://rocm.docs.amd.com/en/latest/deploy/linux/index.html
https://rocm.docs.amd.com/en/latest/deploy/linux/index.html

Part 1.0 - Let’s start by showcasing how you can run the Llama 2 70B Chat Model on
one AMD Instinct MI300X Accelerator on the PowerEdge XE9680 server. Previously we
would use two cutting edge GPUs to complete this task.

On Dell PowerEdge™ XE9680 Server
with 1x AMD® Instinct™ MI300X Accelerator

1x AMD® Instinct™
MI300X Accelerator

Dell™ PowerEdge™
XE9680 Server

 Llama 2 70B Chat Model

INFERENCE

Deploying Llama 2 70B Chat Model with vLLM 0.3.2 on a single AMD Instinct MI300X
Accelerator with Dell PowerEdge XE9680 Server.

Run vLLM Serving with Llama 2 70B Chat Model

 Start the vLLM server for Llama 2 70B Chat model with FP16 precision loaded on a
single AMD Instinct MI300X Accelerator.

1.

python3 -m vllm.entrypoints.openai.api_server --model meta-
llama/Llama-2-70b-chat-hf --dtype float16 --tensor-parallel-size 1

| 4

2. Execute the following curl request to verify if vLLM is successfully serving the model

at the chat completion endpoint.

curl http://localhost:8000/v1/chat/completions \
 -H "Content-Type: application/json" \
 -d '{
 "model": "meta-llama/Llama-2-70b-chat-hf",
 "max_tokens":256,
 "temperature":1.0,
 "messages": [
 {"role": "system", "content": "You are a helpful
assistant."},
 {"role": "user", "content": "Describe AMD ROCm in 180
words."}
]

 }'

The response should look as follows.

{"id":"cmpl-
42f932f6081e45fa8ce7a7212cb19adb","object":"chat.completion","create
d":1150766,"model":"meta-llama/Llama-2-70b-chat-hf","choices":
[{"index":0,"message":{"role":"assistant","content":" AMD ROCm
(Radeon Open Compute MTV) is an open-source software platform
developed by AMD for high-performance computing and deep learning
applications. It allows developers to tap into the massive parallel
processing power of AMD Radeon GPUs, providing faster performance
and more efficient use of computational resources. ROCm supports a
variety of popular deep learning frameworks, including TensorFlow,
PyTorch, and Caffe, and is designed to work seamlessly with AMD's
GPU-accelerated hardware. ROCm offers features such as low-level
hardware control, GPU Virtualization, and support for multi-GPU
configurations, making it an ideal choice for demanding workloads
like artificial intelligence, scientific simulations, and data
analysis. With ROCm, developers can take full advantage of AMD's GPU
capabilities and achieve faster time-to-market and better
performance for their
applications."},"finish_reason":"stop"}],"usage":
{"prompt_tokens":42,"total_tokens":237,"completion_tokens":195}}

| 5

Part 1.1. - Let’s start by showcasing how you can run the Llama 2 70B Chat Model on
one AMD Instinct MI300X Accelerator on the PowerEdge XE9680 server. Previously we
would use two cutting edge GPUs to complete this task.

Running Gradio Chatbot with Llama 2 70B Chat Model

 AMD® ROCm™ 6.0.2

vLLM 0.3.2

Ubuntu 22.04 LTS

 Llama 2 70B Chat

Gradio Chatbot Interface

Dell PowerEdge™
XE9680 Rack Server

8x AMD® Instinct™
MI300X Accelerators

Developed by

This Gradio chatbot works by sending the user input query received through the user
interface to the Llama 2 70B Chat Model being served using vLLM. The vLLM server is
compatible with the OpenAI Chat API hence the request is sent in the OpenAI Chat API
compatible format. The model generates the response based on the request which is sent
back to the client. This response is displayed on the Gradio chatbot user interface.

| 6

Deploying Gradio Chatbot

If not already done, follow the instructions in the Setup Steps section to install the
AMD ROCm driver, libraries, and tools, clone the vLLM repository, build and start
the vLLM ROCm Docker container, and request access to the Llama 2 Models from
Meta.

1.

2. Install the prerequisites for running the chatbot.

pip3 install -U pip
pip3 install openai==1.13.3 gradio==4.20.1

3. Log in to the Hugging Face CLI and enter your HuggingFace access token when
prompted:

huggingface-cli login

4. Start the vLLM server for Llama 2 70B Chat model with data type FP16 on one AMD
Instinct MI300X Accelerator.

python3 -m vllm.entrypoints.openai.api_server --model meta-
llama/Llama-2-70b-chat-hf --dtype float16

5. Run the gradio_openai_chatbot_webserver.py from the /app/vllm/examples
directory within the container with the default configurations.

cd /app/vllm/examples
python3 gradio_openai_chatbot_webserver.py --model meta-llama/Llama-
2-70b-chat-hf

The Gradio chatbot will be running on the port 8001 and can be accessed using the URL
http://localhost:8001. The query passed to the chatbot is “How does AMD ROCm contribute
to enhancing the performance and efficiency of enterprise AI workflows?” The output
conversation with the chatbot is shown below:

| 7

http://localhost:8001/

6. To observe the GPU utilization, use the rocm-smi command as shown below.

| 8

7. Use the command below to access various vLLM serving metrics through the /metrics
endpoint.

curl http://127.0.0.1:8000/metrics

The output should look as follows.

HELP exceptions_total_counter Total number of requested which
generated an exception
TYPE exceptions_total_counter counter
HELP requests_total_counter Total number of requests received
TYPE requests_total_counter counter
requests_total_counter{method="POST",path="/v1/chat/completions"} 1
HELP responses_total_counter Total number of responses sent
TYPE responses_total_counter counter
responses_total_counter{method="POST",path="/v1/chat/completions"} 1
HELP status_codes_counter Total number of response status codes
TYPE status_codes_counter counter
status_codes_counter{method="POST",path="/v1/chat/completions",status_co
de="200"} 1
HELP vllm:avg_generation_throughput_toks_per_s Average generation
throughput in tokens/s.
TYPE vllm:avg_generation_throughput_toks_per_s gauge
vllm:avg_generation_throughput_toks_per_s{model_name="meta-llama/Llama-
2-70b-chat-hf"} 4.222076684555402
HELP vllm:avg_prompt_throughput_toks_per_s Average prefill throughput
in tokens/s.
TYPE vllm:avg_prompt_throughput_toks_per_s gauge
vllm:avg_prompt_throughput_toks_per_s{model_name="meta-llama/Llama-2-
70b-chat-hf"} 0.0
...
HELP vllm:prompt_tokens_total Number of prefill tokens processed.
TYPE vllm:prompt_tokens_total counter
vllm:prompt_tokens_total{model_name="meta-llama/Llama-2-70b-chat-hf"} 44
...
vllm:time_per_output_token_seconds_count{model_name="meta-llama/Llama-2-
70b-chat-hf"} 136.0
vllm:time_per_output_token_seconds_sum{model_name="meta-llama/Llama-2-
70b-chat-hf"} 32.18783768080175
...
vllm:time_to_first_token_seconds_count{model_name="meta-llama/Llama-2-
70b-chat-hf"} 1.0
vllm:time_to_first_token_seconds_sum{model_name="meta-llama/Llama-2-70b-
chat-hf"} 0.2660619909875095

| 9

Part 2: Now that we have deployed the Llama 2 70B Chat Model on a single GPU, let’s
take full advantage of the Dell PowerEdge XE9680 server and deploy eight concurrent
instances of the Llama 2 70B Chat Model with FP16 precision. To handle more
simultaneous users and generate higher throughput, the 8x AMD Instinct MI300X
Accelerators can be leveraged to deploy 8 vLLM serving deployments in parallel.

On Dell PowerEdge™ XE9680 Server
with 8x AMD® Instinct™ MI300X Accelerators

AMD® Instinct™ MI300X
Accelerator

Dell™ PowerEdge™
XE9680 Server

 Llama 2 70B Chat Model

INFERENCE

 8x Instances

8x

Serving Llama 2 70B Chat model with FP16 precision using vLLM 0.3.2 on 8x AMD
Instinct MI300X Accelerators with the PowerEdge XE9680 Server.

 Any Kubernetes distribution on the server. 1.
 AMD GPU device plugins for Kubernetes setup on the installed Kubernetes
distribution.

2.

 A Kubernetes secret that grants access to the container registry, facilitating
Kubernetes deployment.

3.

Prerequisites

To enable the multi GPU vLLM deployment, we use a Kubernetes based stack. The stack
consists of a Kubernetes Deployment with 8 vLLM serving replicas and a Kubernetes
Service to expose all vLLM serving replicas through a single endpoint. The Kubernetes
Service utilizes a round robin based strategy to distribute the requests across the vLLM
serving replicas.

| 10

https://kubernetes.io/docs/home/
https://github.com/ROCm/k8s-device-plugin
https://kubernetes.io/docs/tasks/configmap-secret/managing-secret-using-kubectl/

If not already done, follow the instructions in the Setup Steps section to install the
AMD ROCm driver, libraries, and tools, clone the vLLM repository, build the vLLM
ROCm Docker container, and request access to the Llama 2 Models from Meta.
Push the built vllm-rocm:latest image to the container registry of your choice.

1.

Deploying the multi vLLM serving on 8x AMD Instinct MI300X Accelerators.

vllm deployment
apiVersion: apps/v1
kind: Deployment
metadata:
 name: vllm-serving
 namespace: default
 labels:
 app: vllm-serving
spec:
 selector:
 matchLabels:
 app: vllm-serving
 replicas: 8
 template:
 metadata:
 labels:
 app: vllm-serving
 spec:
 containers:
 - name: vllm
 image: container-registry/vllm-rocm:latest # update the
container registry name
 args: [
 "python3", "-m", "vllm.entrypoints.openai.api_server",
 "--model", "meta-llama/Llama-2-70b-chat-hf"

| 11

2. Create a deployment yaml file “multi-vllm.yaml” based on the sample provided below.

]
 env:
 - name: HUGGING_FACE_HUB_TOKEN
 value: "" # add your huggingface token with Llama 2
models access
 resources:
 requests:
 cpu: 15
 memory: 150G
 amd.com/gpu: 1 # each replica is allocated 1 GPU
 limits:
 cpu: 15
 memory: 150G
 amd.com/gpu: 1
 imagePullSecrets:
 - name: cr-login # kubernetes container registry secret

nodeport service with round robin load balancing
apiVersion: v1
kind: Service
metadata:
 name: vllm-serving-service
 namespace: default
spec:
 selector:
 app: vllm-serving
 type: NodePort
 ports:
 - name: vllm-endpoint
 port: 8000
 targetPort: 8000
 nodePort: 30800 # the external port endpoint to access the
serving

3.Deploy the multi vLLM serving using the deployment configuration with kubectl.
This will deploy eight replicas of vLLM serving using the Llama 2 70B Chat model with
FP16 precision.

kubectl apply -f multi-vllm.yaml

| 12

4. Execute the following curl request to verify whether the model is being successfully
served at the chat completion endpoint at port 30800.

curl http://localhost:30800/v1/chat/completions \
 -H "Content-Type: application/json" \
 -d '{
 "model": "meta-llama/Llama-2-70b-chat-hf",
 "max_tokens":256,
 "temperature":1.0,
 "messages": [
 {"role": "system", "content": "You are a helpful
assistant."},
 {"role": "user", "content": "Describe AMD ROCm in 180
words."}
]

 }'

The response should look as follows:

{"id":"cmpl-
42f932f6081e45fa8ce7dnjmcf769ab","object":"chat.completion","created
":1150766,"model":"meta-llama/Llama-2-70b-chat-hf","choices":
[{"index":0,"message":{"role":"assistant","content":" AMD ROCm
(Radeon Open Compute MTV) is an open-source software platform
developed by AMD for high-performance computing and deep learning
applications. It allows developers to tap into the massive parallel
processing power of AMD Radeon GPUs, providing faster performance
and more efficient use of computational resources. ROCm supports a
variety of popular deep learning frameworks, including TensorFlow,
PyTorch, and Caffe, and is designed to work seamlessly with AMD's
GPU-accelerated hardware. ROCm offers features such as low-level
hardware control, GPU Virtualization, and support for multi-GPU
configurations, making it an ideal choice for demanding workloads
like artificial intelligence, scientific simulations, and data
analysis. With ROCm, developers can take full advantage of AMD's GPU
capabilities and achieve faster time-to-market and better
performance for their
applications."},"finish_reason":"stop"}],"usage":
{"prompt_tokens":42,"total_tokens":237,"completion_tokens":195}}

| 13

5. We used load testing tools similar to Apache Bench to simulate concurrent user
requests to the serving endpoint. The screenshot below showcases the output of
rocm-smi while Apache Bench is running 2048 concurrent requests.

Part 3: Now that we have deployed the Llama 2 70B Chat model on both one GPU and
eight concurrent GPUs, let's try fine-tuning Llama 2 70B Chat with Hugging Face
Accelerate.

On Dell PowerEdge™ XE9680 Server
with 8x AMD® Instinct™ MI300X Accelerators

AMD® Instinct™ MI300X
Accelerator

Dell™ PowerEdge™
XE9680 Server Llama 2 70B Chat Model

FINE-TUNING

 8x Instances

Hugging Face Accelerate

8x

| 14

https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html

 Fine-tuning

 AMD® ROCm™ 6.0.2

Hugging Face TRL 4.38

Ubuntu 22.04 LTS

Hugging Face Accelerate 0.27.2

 Llama 2 70B Chat Model Guanaco-1k Dataset

Dell PowerEdge™
XE9680 Rack Server

8x AMD® Instinct™
MI300X Accelerators

Developed by

As shown above, the fine-tuning software stack begins with the AMD ROCm PyTorch image
serving as the base, offering a tailored PyTorch library for optimal fine-tuning. Leveraging
the Hugging Face Transformers library alongside Hugging Face Accelerate, facilitates
multi-GPU fine-tuning capabilities. The Llama 2 70B Chat model will be fine-tuned with
FP16 precision, utilizing the Guanaco-1k dataset from Hugging Face on eight AMD Instinct
MI300X Accelerators.

In this scenario, we will perform full parameter fine-tuning of the Llama 2 70B Chat Model.
While you can also implement fine-tuning using optimized techniques such as Low-Rank
Adaptation of Large Language Models (LoRA) on accelerators with smaller memory
footprints, performance tradeoffs exist on specific complex objectives. These nuances are
addressed by full parameter fine-tuning methods, which generally require accelerators that
support significant memory requirements.

| 15

Fine-tuning Llama 2 70B Chat on 8x AMD Instinct MI300X Accelerators.

Fine-tune the Llama 2 70B Chat Model with FP16 precision for question and answer tasks
by utilizing the mlabonne/guanaco-llama2-1k dataset on the 8X AMD Instinct MI300X
Accelerators.

The below command opens a shell within the docker container.

sudo docker run -it \
--name fine-tuning \
--network=host \
--device=/dev/kfd \
--device=/dev/dri \
--shm-size 16G \
--group-add=video \
--workdir=/ \
rocm/pytorch:rocm6.0.2_ubuntu22.04_py3.10_pytorch_2.1.2 bash

3. Install the necessary Python prerequisites.

pip3 install -U pip
pip3 install transformers==4.38.2 trl==0.7.11 datasets==2.18.0

4. Log in to Hugging Face CLI and enter your HuggingFace access token when
prompted.

huggingface-cli login

5. Import the required Python packages.

from datasets import load_dataset
from transformers import (
 AutoModelForCausalLM,
 AutoTokenizer,
 TrainingArguments,
 pipeline
)
from trl import SFTTrainer

| 16

1. If not already done, install the AMD ROCm driver, libraries, and tools and request
access to the Llama 2 Models from Meta following the instructions in the Setup Steps
section.

2. Start the fine-tuning docker container with the AMD ROCm PyTorch base image.

https://huggingface.co/datasets/mlabonne/guanaco-llama2-1k

6. Load the Llama 2 70B Chat Model and the mlabonne/guanaco-llama2-1k dataset
from Hugging Face.

load the model and tokenizer
base_model_name = "meta-llama/Llama-2-70b-chat-hf"

tokenizer parameters
llama_tokenizer = AutoTokenizer.from_pretrained(base_model_name,
trust_remote_code=True)
llama_tokenizer.pad_token = llama_tokenizer.eos_token
llama_tokenizer.padding_side = "right"

load the based model
base_model = AutoModelForCausalLM.from_pretrained(
 base_model_name,
 device_map="auto",
)
base_model.config.use_cache = False
base_model.config.pretraining_tp = 1

load the dataset from huggingface
dataset_name = "mlabonne/guanaco-llama2-1k"
training_data = load_dataset(dataset_name, split="train")

7. Define fine-tuning configurations and start fine-tuning for 1 epoch. The fine tuned
model will be saved in finetuned_llama2_70b directory.

fine tuning parameters
train_params = TrainingArguments(
 output_dir="./runs",
 num_train_epochs=1, # fine tuning for 1 epochs
 per_device_train_batch_size=8 # setting per GPU batch size
)

| 17

define the trainer
fine_tuning = SFTTrainer(
 model=base_model,
 train_dataset=training_data,
 dataset_text_field="text",
 tokenizer=llama_tokenizer,
 args=train_params,
 max_seq_length=512

)

start the fine tuning run
fine_tuning.train()

save the fine tuned model
fine_tuning.model.save_pretrained("finetuned_llama2_70b")
print("Fine-tuning completed")

8. Use the `rocm-smi` command to observe GPU utilization while fine-tuning.

| 18

Summary

INFERENCE FINE-TUNING

1x AMD® Instinct™
MI300X Accelerator

8x AMD® Instinct™
MI300X Accelerators

8x AMD® Instinct™
MI300X Accelerators

 Llama 2 70B Chat Model

 8x Instance

 Llama 2 70B Chat Model Llama 2 70B Chat Model

Dell™ PowerEdge™
XE9680 Server

Dell™ PowerEdge™
XE9680 Server

Dell™ PowerEdge™
XE9680 Server

8x8x

Dell PowerEdge XE9680 Server equipped with AMD Instinct MI300X Accelerators offers
enterprises industry leading infrastructure to create custom AI solutions using their
proprietary data. In this blog, we showcased how enterprises deploying applied AI can take
advantage of this solution in three critical use cases:

Deploying the entire 70B parameter model on a single AMD Instinct MI300X Accelerator
in Dell PowerEdge XE9680 Server
Deploying eight concurrent instances of the model, each running on one of eight AMD
Instinct MI300X accelerators on the Dell PowerEdge XE9680 Server
Fine-tuning the 70B parameter model with FP16 precision on one PowerEdge XE9680
with all eight AMD Instinct MI300X accelerators

Metrum AI is excited to see continued advancements from Dell, AMD, and Hugging Face on
hardware and software optimizations in the future.

| 18

Additional Criteria for IT Decision Makers

Why is memory footprint critical for LLMs?

Large language models often have enormous numbers of parameters, leading to
significant memory requirements. When working with LLMs, it is essential to ensure that
the GPU has sufficient memory to store these parameters so that the model can run
efficiently. In addition to model parameters, large language models require substantial
memory to store input data, intermediate activations, and gradients during training or
inference, and insufficient memory can lead to data loss or performance degradation.

Why is the Dell PowerEdge XE9680 Server with AMD Instinct MI300X Accelerators
well-suited for LLMs?

Designed especially for AI tasks, Dell PowerEdge XE9680 Server is a robust data-
processing server equipped with eight AMD Instinct MI300X accelerators, making it
well-suited for AI-workloads, especially for those involving training, fine-tuning, and
conducting inference with LLMs. AMD Instinct MI300X Accelerator is a high-
performance AI accelerator intended to operate in groups of eight within AMD’s
generative AI platform.

Running inference, specifically with a Large Language Model (LLM), requires
approximately 1.2 times the memory occupied by the model on a GPU. In FP16
precision, the model memory requirement can be estimated as 2 bytes per parameter
multiplied by the number of model parameters. For example, the Llama 2 70B model
with FP16 precision requires a minimum of 168 GB of GPU memory to run inference.
With 192 GB of GPU memory, a single AMD Instinct MI300X Accelerator can host an
entire Llama 2 70B parameter model for inference. It is optimized for LLMs and can
deliver up to 10.4 Petaflops of performance (BF16/FP16) with 1.5TB of total HBM3
memory for a group of eight accelerators.

| 19

Fine-tuning enables enterprises to develop custom models with their proprietary data
by leveraging the knowledge already encoded in pre-trained models. As a result, fine-
tuning requires less labeled data and time for training compared to training a model
from scratch, making it a more efficient approach for achieving competitive
performance, particularly in the quantity of computational resources used and training
time.

What is fine-tuning, and why is it critical for enterprises?

Copyright © 2024 Metrum AI, Inc. All Rights Reserved. This project was commissioned by Dell
Technologies. Dell and other trademarks are trademarks of Dell Inc. or its subsidiaries. AMD, Instinct™,
ROCm™, and combinations thereof are trademarks of Advanced Micro Devices, Inc. All other product
names are the trademarks of their respective owners.

***DISCLAIMER - Performance varies by hardware and software configurations, including testing
conditions, system settings, application complexity, the quantity of data, batch sizes, software versions,
libraries used, and other factors. The results of performance testing provided are intended for
informational purposes only and should not be considered as a guarantee of actual performance.

